Titanic competition using svm

# Titanic competition script using the svm method library(e1071) library(rpart) set.seed(415) train <- read.csv(“../input/train.csv”) test <- read.csv(“../input/test.csv”) feature_eng <- function(train_df, test_df) { # Combining the train and test sets for purpose engineering test_df$Survived <- NA combi <- rbind(train_df, test_df) #Features engineering combi$Name <- as.character(combi$Name) # The number of titles are reduced to reduce the noise in the data combi$Title <- sapply(combi$Name, FUN=function(x) {strsplit(x, split='[,.]’)[[1]][2]}) combi$Title <- sub(‘ ‘, ”, combi$Title) #table(combi$Title) combi$Title[combi$Title %in% c(‘Mme’, ‘Mlle’)] <- ‘Mlle’ combi$Title[combi$Title %in% c(‘Capt’, ‘Don’, ‘Major’, ‘Sir’)] <- ‘Sir’ combi$Title[combi$Title %in% c(‘Dona’, ‘Lady’, ‘the Countess’, ‘Jonkheer’)] <- ‘Lady’ combi$Title <- factor(combi$Title) # Reuniting the families together combi$FamilySize <- combi$SibSp + combi$Parch + 1 combi$Surname <- sapply(combi$Name, FUN=function(x) {strsplit(x, split='[,.]’)[[1]][1]}) combi$FamilyID <- paste(as.character(combi$FamilySize), combi$Surname, sep=””) combi$FamilyID[combi$FamilySize <= 2] <- ‘Small’ #table(combi$FamilyID) combi$FamilyID <- factor(combi$FamilyID) #…


Link to Full Article: Titanic competition using svm

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!