mytitaic

import numpy as np import pandas as pd train = pd.read_csv(“../input/train.csv”, ) test = pd.read_csv(“../input/test.csv”, ) def fix_data(titanic): titanic[“Age”] = titanic[“Age”].fillna(titanic[“Age”].median()) titanic[“Age”].median() titanic[“Embarked”] = titanic[“Embarked”].fillna(“S”) titanic.loc[titanic[“Embarked”] == “S”, “Embarked”] = 0 titanic.loc[titanic[“Embarked”] == “C”, “Embarked”] = 1 titanic.loc[titanic[“Embarked”] == “Q”, “Embarked”] = 2 titanic.loc[titanic[“Sex”] == “male”, “Sex”] = 0 titanic.loc[titanic[“Sex”] == “female”, “Sex”] = 1 titanic.loc[titanic[“Name”].str.find(“Sir.”) != -1, “NameClass”] = 1 titanic.loc[titanic[“Name”].str.find(“Sir.”) == -1, “NameClass”] = 0 return titanic train_data = fix_data(train) test_data = fix_data(test) features = [“Pclass”, “Sex”, “Age”, “NameClass”] X = train_data[features] y = train_data.Survived from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33) from sklearn.linear_model import LogisticRegression from sklearn import tree clf = tree.DecisionTreeClassifier(criterion=’entropy’, max_depth=3,min_samples_leaf=5) clf = clf.fit(X,y) print(“{:.2f}”.format(clf.score(X_test,y_test))) clf = LogisticRegression(random_state=3) clf.fit(X,y) print(“{:.2f}”.format(clf.score(X_test,y_test))) #0.83 from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier( random_state=1,…


Link to Full Article: mytitaic

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!