Machine learning outperforms physicists in experiment

The experiment, featuring the small red glow of a BEC trapped in infrared laser beams (credit: Stuart Hay, ANU) Australian physicists have used an online optimization process based on machine learning to produce effective Bose-Einstein condensates (BECs) in a fraction of the time it would normally take the researchers. A BEC is a state of matter of a dilute gas of atoms trapped in a laser beam and cooled to temperatures just above absolute zero. BECs are extremely sensitive to external disturbances, which makes them ideal for research into quantum phenomena or for making very precise measurements such as tiny changes in the Earth’s magnetic field or gravity. The experiment, developed by physicists from ANU, University of Adelaide and UNSW ADFA, demonstrated that “machine-learning online optimization” can discover optimized condensation…


Link to Full Article: Machine learning outperforms physicists in experiment