Machine Learning – Dimensionality Reduction (for Cognizant)

Welcome to this machine learning course on Dimensionality Reduction. Dimensionality Reduction is a category of unsupervised machine learning techniques used to reduce the number of features in a dataset. Dimension reduction can also be used to group similar variables together. In this course, you will learn the theory behind dimension reduction, and get some hands-on practice using Principal Components Analysis (PCA) and Exploratory Factor Analysis (EFA) on survey data. The code used in this course is prepared for you in R.


Link to Full Article: Machine Learning – Dimensionality Reduction (for Cognizant)

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!