Google machine-learning system is first to defeat professional Go player

Go is played on a grid of black lines (usually 19×19). Game pieces, called stones, are played on the line intersections. (credit: Goban1/Wikipedia) A deep-learning computer system called AlphaGo created by Google’s DeepMind team has defeated reigning three-time European Go champion Fan Hui 5 games to 0 — the first time a computer program has ever beaten a professional Go player, reports Google Research blog today (Jan. 27) — a feat previously thought to be at least a decade away. “AlphaGo uses general machine-learning techniques to allow it to improve itself, just by watching and playing games,” according to David Silver and Demis Hassabis of Google DeepMind. Using a vast collection of more than 30 million Go moves from expert players, DeepMind researchers trained their system to play Go on its…


Link to Full Article: Google machine-learning system is first to defeat professional Go player

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!