Four Ways Data Science Goes Wrong and How Test-Driven Data Analysis Can Help

If, as Niels Bohr maintained, an expert is a person who has made all the mistakes that can be made in a narrow field, we consider ourselves expert data scientists.  After twenty years of doing what’s been variously called statistics, data-mining, analytics and data-science, we have probably made every mistake in the book—bad assumptions about how data reflects reality; imposing our own biases; unjustified statistical inferences and misguided data transformations; poorly generalized deployment; and unforeseen stakeholder consequences.  But at least we’re not alone. We believe that studying all the ways we get it wrong suggests a powerful “test driven” approach that can help us avoid some of the more egregious mistakes in the future.  By extending the principles of test-driven development, we can prevent some errors altogether and catch others…


Link to Full Article: Four Ways Data Science Goes Wrong and How Test-Driven Data Analysis Can Help

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!