First Attempt

import pandas # Read in data file titanic = pandas.read_csv(‘../input/train.csv’) # Fill in missing ages with median titanic[‘Age’] = titanic [‘Age’].fillna(titanic[‘Age’].median()) # Machine learning algorithms can only make sense of numeric data. # Replace sex strings with numeric 0 for male and 1 for female titanic.loc[titanic[‘Sex’] == ‘male’,’Sex’] = 0 titanic.loc[titanic[‘Sex’] == ‘female’,’Sex’] = 1 # Assumed nan Embarked values to be S (the most common) titanic[‘Embarked’] = titanic[‘Embarked’].fillna(‘S’) # Replace embarked values S(0), C(1), Q(2) titanic.loc[titanic[‘Embarked’] == ‘S’,’Embarked’] = 0 titanic.loc[titanic[‘Embarked’] == ‘C’,’Embarked’] = 1 titanic.loc[titanic[‘Embarked’] == ‘Q’,’Embarked’] = 2 # Import the linear regression class from sklearn.linear_model import LogisticRegression #Sklearn also has a helper that makes it easy to do cross validation from sklearn import cross_validation # The columns we’ll use to predict the target predictors = [‘Pclass’,…


Link to Full Article: First Attempt