Evaluating Machine Learning Models

Publisher: O’Reilly Released: September 2015 Description Data science today is a lot like the Wild West: there’s endless opportunity and excitement, but also a lot of chaos and confusion. If you’re new to data science and applied machine learning, evaluating a machine-learning model can seem pretty overwhelming. Now you have help. With this O’Reilly report, machine-learning expert Alice Zheng takes you through the model evaluation basics. In this overview, Zheng first introduces the machine-learning workflow, and then dives into evaluation metrics and model selection. The latter half of the report focuses on hyperparameter tuning and A/B testing, which may benefit more seasoned machine-learning practitioners. With this report, you will: Learn the stages involved when developing a machine-learning model for use in a software application Understand the metrics used for supervised…


Link to Full Article: Evaluating Machine Learning Models

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!