Book Review: Why – A Guide to Finding and Using Causes

A new book, “ Why: A Guide to Finding and Using Causes ,” by Stevens Institute of Technology assistant professor of computer science Samantha Kleinberg is a necessary addition to any data scientist’s bookshelf as it helps bring focus to the dreaded “correlation does not imply causation” conundrum that affects our understanding of data-centric problems. The best outcome of Big Data analytics, or of any computational model, is a number of correlations each with a level of confidence that the correlation holds true in the real world or at least the world represented by the data. But to determine if a correlation is true in the real world, it must be verified empirically. This can be viewed as the First Law of Data Science and a good reason why this…


Link to Full Article: Book Review: Why – A Guide to Finding and Using Causes

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!