Algorithm That Mastered Pong Now Excellent at Flappy Bird, Still Single

Improving on a deep-learning method pioneered for Pong, Space Invaders, and other Atari games, Stanford University computer science student Kevin Chen has created an algorithm that’s quite good at the classic 2014 side-scroller Flappy Bird. Chen has leveraged a concept known as “q-learning,” in which an agent aims to improve its reward score with each iteration of playing, to perfect a nearly impossible and impossibly addicting game. Chen created a system wherein his algorithm was optimized to seek three rewards: a small positive reward for each frame it stayed alive, a large reward for passing through a pipe, and an equally large (but negative) reward for dying. Thus motivated, the so-called deep-q network can outplay humans, according to the report Chen authored: “We were able to successfully play the game…


Link to Full Article: Algorithm That Mastered Pong Now Excellent at Flappy Bird, Still Single

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!