A survey of transfer learning

  A survey of transfer learning Machine learning and data mining techniques have been used in numerous real-world applications. An assumption of traditional machine learning methodologies is the training data and testing data are taken from the same domain, such that the input feature space and data distribution characteristics are the same.However, in some real-world machine learning scenarios, this assumption does not hold. There are cases where training data is expensive or difficult to collect.Therefore, there is a need to create high-performance learners trained with more easily obtained data from different domains. This methodology is referred to as transfer learning.This survey paper formally defines transfer learning, presents information on currentsolutions, and reviews applications applied to transfer learning. Lastly, there is information listed on software downloads for various transfer learning solutions and…


Link to Full Article: A survey of transfer learning