A machine learning strategy for predicting localization of post-translational modification sites in …

Post-translational modification (PTM) of proteins is a key mechanism for cellular regulation including protein-protein interactions, protein functions, protein turnover, protein localization, cell signaling, and proteomic diversity [1, 2]. More than 200 different types of amino acid-specific PTMs have been identified, including acetylation, methylation, glycosylation, phosphorylation, sumoylation, ubiquitylation and so on [2]. Several types of PTMs are known to have specific functions regarding protein-protein interactions: for example, phosphorylation sites tend to be localized on protein binding hotspots and modulate the stability of protein interactions [3]; ubiquitylation plays an important role in cellular signaling such as protein degradation, autophagy, and protein turnover by promoting interactions with various proteins which recognize this PTM [4–6]; acetylation controls a variety of cellular processes, and alters the properties of protein-binding interfaces by neutralizing the positive charge…


Link to Full Article: A machine learning strategy for predicting localization of post-translational modification sites in …